ANALISIS POTENSI SENYAWA REPENSOL SEBAGAI KANDIDAT INHIBITOR

Muhammad Khalil, Mohamad Amin, Betty Lukiati

Abstract


Penelitian ini bertujuan untuk menganalisis potensi senyawa repensol dalam menginhibisi replikasi virus hepatitis B (HBV) melalui pendekatan in silico dengan menggunakan perangkat komputasi dan perangkat lunak (software). Analisis dilakukan dengan metode simulasi penambatan molekular (Molecular Docking Simulation) yang menggunakan software PyRx, serta divisualisasikan dengan PyMol dan Discovery Studio. Data yang digunakan dalam penelitian yaitu struktur senyawa repensol, protein target berupa protein kapsid HBV, dan ligan referensi berupa 4-methyl heteroaryldihydropyrimidine (4-metil HAP) yang dikoleksi dari database PubChem dan PDB. Hasil docking menunjukkan bahwa ikatan yang terbentuk antara senyawa repensol dengan protein kapsid HBV memiliki nilai binding affinity lebih rendah dari ligan referensi, yaitu -7.0 kkal/mol. Visualisasi menunjukkan senyawa repensol membentuk binding site yang sesuai dengan ligan referensi dan melibatkan 13 residu asam amino dari protein kapsid HBV, yaitu PRO D:138, ILE D:139, SER D:141, PHE D:110, THR D:109, LEU D:37, THR D:33, ILE D:105, PRO D:25, TYR D;118, TRP D:102, LEU D:140, dan PHE D:23. Jenis ikatan yang terbentuk antara senyawa repensol dengan protein kapsid HBV yaitu ikatan van der Waals, hidrogen konvensional, Pi-Sigma, Pi-Pi stacked dan Pi-alkil.


Full Text:

PDF

References


Argenta, D. F., Silva, I. T., Bassani, V. L., Koester, L. S., Teixeira, H. F., & Simoes, C. M. O. (2015). Antiherpes evaluation of soybean isoflavonoids. Archives of virology, 160(9), 2335-2342. https://link.springer.com/article/10.1007/s00705-015-2514-z

Berman, H. M., Westbrook, J., Feng, Z., Gilliland, G., Bhat, T. N., Weissig, H., Shindyalov, I. N. & Bourne, P. E. (2000). The protein data bank. Nucleic acids research, 28(1), 235-242. https://doi.org/10.1093/nar/28.1.235

Du, H., Huang, Y., & Tang, Y. (2010). Genetic and metabolic engineering of isoflavonoid biosynthesis. Applied Microbiology and Biotechnology, 86(5), 12931312. https://link.springer.com/article/ 10.1007/s00253-010-2512-8

Firdayani, Kusumaningrum, S., & Miranti, Y. R. (2017). Potensi Senyawa Bioaktif Tanaman Genus Phyllanthus Sebagai Inhibitor Replikasi Virus Hepatitis B. Jurnal Bioteknologi & Biosains Indonesia (JBBI), 4(2), 85-95.

Gomes, J., Ramsundar, B., Feinberg, E. N., & Pande, V. S. (2017). Atomic convolutional networks for predicting protein-ligand binding affinity. arXiv preprint arXiv:1703.10603. https://arxiv.org/abs/1703.10603

Gromiha, M. M., Yugandhar, K., & Jemimah, S. (2017). Protein– protein interactions: scoring schemes and binding affinity. Current opinion in structural biology, 44, 31-38. https://doi.org/10.1016/j.sbi.201 6.10.016

Kim, S., Chen, J., Cheng, T., Gindulyte, A., He, J., He, S., Li, Q., Shoemaker, B. A., Thiessen, P. A., Yu, B., Zaslavsky, L., Zhang, J., & Bolton, E. E. (2019). PubChem 2019 update: improved access to chemical data. Nucleic acids research, 47(D1), D1102– D1109. https://doi.org/10.1093/nar/gky1033

Lavanchy, D. (2004). Hepatitis B virus epidemiology, disease burden, treatment, and current and emerging prevention and control measures. Journal of viral hepatitis, 11(2), 97-107. https://doi.org/10.1046/j.1365-2893.2003.00487.x

Li, J., Fu, A. & Zhang, L. An Overview of Scoring Functions Used for Protein–Ligand Interactions in Molecular Docking. Interdiscip Sci Comput Life Sci 11, 320–328 (2019). https://doi.org/10.1007/s12539-019-00327-w

Lok, A. S., Zoulim, F., Dusheiko, G., & Ghany, M. G. (2017). Hepatitis B cure: from discovery to regulatory approval. Journal of hepatology, 67(4), 847-861. https://doi.org/10.1016/j.jhep.20 17.05.008

Lozano, R., Naghavi, M., Foreman, K., Lim, S., Shibuya, K., Aboyans, V.,& AlMazroa, M. A. (2012). Global and regional mortality from 235 causes of death for 20 age groups in 1990 and 2010: a systematic analysis for the Global Burden of Disease Study 2010. The lancet, 380(9859), 2095-2128. https://doi.org/10.1016/S0140-6736(12)61728-0

MacLachlan, J. H., & Cowie, B. C. (2015). Hepatitis B virus epidemiology. Cold Spring Harbor perspectives in medicine, 5(5), a021410. https://doi.org/10.1101/cshperspect.a021410

National Center for Biotechnology Information. PubChem Database. CID=44257533, https://pubchem.ncbi.nlm.nih.gov/compound/44257533#section=3D-Conformer (accessed on June 27, 2020)

Ott, J. J., Stevens, G. A., Groeger, J., & Wiersma, S. T. (2012). Global epidemiology of hepatitis B virus infection: new estimates of age-specific HBsAg seroprevalence and endemicity. Vaccine, 30(12), 2212-2219. https://doi.org/10.1016/j.vaccine.2011.12.116

Pan, A. C., Borhani, D. W., Dror, R. O., & Shaw, D. E. (2013). Molecular determinants of drugreceptor binding kinetics. Drug Discovery Today, 18(13–14), 667–673. https://doi.org/10.1016/j.drudis.2013.02.007

Qiu, Z., Lin, X., Zhou, M., Liu, Y., Zhu, W., Chen, W., Zhang, W., Guo, L., Wu, G., Jiang, M., Qin, N., Ren, S., Qiu, H., Zhong, S., Zhang, Y., Shi, L., Shen, F., Mao, Y., Zhou, X., & Huang, M. (2016). Design and synthesis of orally bioavailable 4-methyl heteroaryldihydropyrimidine based hepatitis B virus (HBV) capsid inhibitors. Journal of medicinal chemistry, 59(16), 7651-7666. https://doi.org/10.1021/acs.jmedchem.6b00879

Seeger, C., & Mason, W. S. (2015). Molecular biology of hepatitis B virus infection. Virology, 479, 672-686. https://doi.org/10.1016/j.virol.2015.02.031

Song, L. T., Liu, R. R., Zhai, H. L., Meng, Y. J., & Zhu, M. (2019). Molecular mechanisms of tetrahydropyrrolo [1, 2-c] pyrimidines as HBV capsid assembly inhibitors. Archives of biochemistry and biophysics, 663, 1-10. https://doi.org/10.1016/j.abb.2018.12.029

Tang, L., Zhao, Q., Wu, S., Cheng, J., Chang, J., & Guo, J. T. (2017). The current status and future directions of hepatitis B antiviral drug discovery. Expert opinion on drug discovery, 12(1), 5-15. https://doi.org/10.1080/17460441.2017.1255195

Wang, X. (2011). Structure, function, and engineering of enzymes in isoflavonoid biosynthesis. Functional & integrative genomics, 11(1), 13-22.https://link.springer.com/article/10.1007/s10142-010-0197-9

Wishart DS, Feunang YD, Marcu A, Guo AC, Liang K, et al., HMDB 4.0 — The Human Metabolome Database for 2018. Nucleic Acids Res. 2018. Jan 4;46(D1):D608-17. 29140435. https://doi.org/10.1093/nar/gkx1089

Yu, J., Jia, H., Guo, X., Desta, S., Zhang, S., Zhang, J., Ding, X., Liang, X., Liu, X., & Zhan, P. (2020). Design, synthesis, and evaluation of novel heteroaryldihydropyrimidine derivatives as non‐nucleoside hepatitis B virus inhibitors by exploring the solvent‐exposed region. Chemical Biology & Drug Design, 95(6), 567-583. https://doi.org/10.1111/cbdd.13512

Zhou, Z., Hu, T., Zhou, X., Wildum, S., Garcia-Alcalde, F., Xu, Z., Wu, D.,Mao, Y., Tian, X., Zhou, Y., Shen, F., Zhang, Z., Tang, G., Najera, I., Yang, G., Shen, H.C., Young, J.A.T., & Qin, N. (2017). Heteroaryldihydropyrimidine (HAP) and Sulfamoylbenzamide (SBA) Inhibit Hepatitis B Virus Replication by Different Molecular Mechanisms. Scientific Reports, 7(February), 1–12. https://doi.org/10.1038/srep42374




DOI: http://dx.doi.org/10.22373/pbio.v8i2.9669

DOI (PDF): http://dx.doi.org/10.22373/pbio.v8i1.9669.g5446

Refbacks

  • There are currently no refbacks.


      

Prosiding Seminar Nasional Biotik
ISBN : 97-602-60401-3-8
ISSN : 2828-1675
Published By Biology Education Study Program Faculty of Tarbiyah and Teacher Training Ar-Raniry State Islamic University Banda Aceh, Indonesia.
Email : [email protected]

 Lisensi Creative Commons
Prosiding Seminar Nasional Biotik : is licensed under  a Creative Commons Attribution 4.0 International License CC BY-SA 4.0